Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 214: 115683, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429422

RESUMEN

Neflamapimod, a selective inhibitor of the alpha isoform of p38 mitogen-activated protein kinase (MAPKα), was investigated for its potential to inhibit lipopolysaccharide (LPS)-induced activation of endothelial cells (ECs), adhesion molecule induction, and subsequent leukocyte attachment to EC monolayers. These events are known to contribute to vascular inflammation and cardiovascular dysfunction. Our results demonstrate that LPS treatment of cultured ECs and rats leads to significant upregulation of adhesion molecules, both in vitro and in vivo, which can be effectively inhibited by neflamapimod treatment. Western blotting data further reveals that neflamapimod inhibits LPS-induced phosphorylation of p38 MAPKα and the activation of NF-κB signaling in ECs. Additionally, leukocyte adhesion assays demonstrate a substantial reduction in leukocyte attachment to cultured ECs and the aorta lumen of rats treated with neflamapimod. Consistent with vascular inflammation, LPS-treated rat arteries exhibit significantly diminished vasodilation response to acetylcholine, however, arteries from rats treated with neflamapimod maintain their vasodilation capacity, demonstrating its ability to limit LPS-induced vascular inflammation. Overall, our data demonstrate that neflamapimod effectively inhibits endothelium activation, adhesion molecule expression, and leukocyte attachment, thereby reducing vascular inflammation.


Asunto(s)
Células Endoteliales , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Células Endoteliales/metabolismo , Lipopolisacáridos/toxicidad , Molécula 1 de Adhesión Celular Vascular/metabolismo , Moléculas de Adhesión Celular/metabolismo , Leucocitos , Adhesión Celular , Inhibidores de Proteínas Quinasas/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Endotelio Vascular/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo
2.
J Pharmacol Sci ; 150(4): 211-222, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36344043

RESUMEN

Canagliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibitor, is reported to produce beneficial cardiovascular effects including a reduction in arterial contractility, and blood pressure. However, whether canagliflozin could directly relax resistance mesenteric arteries, underlying molecular mechanism and its role in regulating systemic blood pressure remain unclear. Here, we investigated the mechanism of regulation of small mesenteric artery contractility and its relevance for blood pressure regulation. Our pressure myography data showed that canagliflozin application rapidly produces a concentration-dependent vasodilation in mesenteric arteries. Such vasodilation was inhibited by concurrent inhibition of smooth muscle cell voltage-gated K+ channels KV1.5 (by 1 µM DPO-1), KV2.1 (by 100 nM guangxitoxin), and KV7 (by 10 µM linopirdine) but not by the inhibition of small-, intermediate-, and large-conductance Ca2+-activated K+ channels (SKCa by 1 µM apamin, IKCa 10 µM TRAM-34, and BKCa by 10 µM paxilline, respectively), ATP-sensitive (KATP) channels (by 10 µM glibenclamide), or SERCA pump (by 0.1 µM thapsigargin). Inhibition of SGLTs (by 1 µM phlorizin or the inhibition of endothelial signaling did not alter canagliflozin-evoked vasodilation. Consistently, acute canagliflozin treatment (4 mg/kg body weight) lowered systemic blood pressure in vivo. Overall, our data suggests that canagliflozin stimulates KV1.5, KV2.1, and KV7 channels, leading to vasodilation and a reduction of systemic blood pressure.


Asunto(s)
Canagliflozina , Vasodilatación , Canagliflozina/farmacología , Presión Sanguínea , Arterias Mesentéricas , Adenosina Trifosfato , Endotelio Vascular
3.
Heliyon ; 8(5): e09503, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35647331

RESUMEN

Dapagliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor that, in addition to glucose reduction, lowers systemic blood pressure. Here, we investigated if dapagliflozin could directly relax small mesenteric arteries that control peripheral vascular resistance and blood pressure, and the underlying molecular mechanism. We used pressurized arterial myography, pharmacological inhibition and Western blotting to investigate the direct effect of dapagliflozin on the contractility of freshly isolated, resistance-size rat mesenteric arteries. Our pressure myography data unveiled that dapagliflozin relaxed small mesenteric arteries in a concentration-dependent manner. Non-selective inhibition of KV channels and selective inhibition of smooth muscle cell voltage-gated K+ channels KV7 attenuated dapagliflozin-induced vasorelaxation. Inhibition of other major KV isoforms such as KV1.3, KV1.5 channels as well as large-conductance Ca2+-activated K+ (BKCa) channels, ATP-sensitive (KATP) channels did not abolish vasodilation. Dapagliflozin-evoked vasodilation remained unaltered by pharmacological inhibition of endothelium-derived nitric oxide (NO) signaling, prostacyclin (PGI2), as well as by endothelium denudation. Our Western blotting data revealed that SGLT2 protein is expressed in rat mesenteric arteries. However, non-selective inhibition of SGLTs did not induce vasodilation, demonstrating that the vasodilatory action is independent of SGLT2 inhibition. Overall, our data suggests that dapagliflozin directly and selectively stimulates arterial smooth muscle cells KV7 channels, leading to vasodilation in resistance-size mesenteric arteries. These findings are significant as it uncovers for the first time a direct vasodilatory action of dapagliflozin in resistance mesenteric arteries, which may lower systemic blood pressure.

4.
Sci Rep ; 12(1): 4905, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318382

RESUMEN

Neflamapimod, a selective inhibitor of p38 mitogen activated protein kinase alpha (MAPKα), is under clinical investigation for its efficacy in Alzheimer's disease (AD) and dementia with Lewy Bodies (DLB). Here, we investigated if neflamapimod-mediated acute inhibition of p38 MAPKα could induce vasodilation in resistance-size rat mesenteric arteries. Our pressure myography data demonstrated that neflamapimod produced a dose-dependent vasodilation in mesenteric arteries. Our Western blotting data revealed that acute neflamapimod treatment significantly reduced the phosphorylation of p38 MAPKα and its downstream target heat-shock protein 27 (Hsp27) involved in cytoskeletal reorganization and smooth muscle contraction. Likewise, non-selective inhibition of p38 MAPK by SB203580 attenuated p38 MAPKα and Hsp27 phosphorylation, and induced vasodilation. Endothelium denudation or pharmacological inhibition of endothelium-derived vasodilators such as nitric oxide (NO) and prostacyclin (PGI2) had no effect on such vasodilation. Neflamapimod-evoked vasorelaxation remained unaltered by the inhibition of smooth muscle cell K+ channels. Altogether, our data for the first time demonstrates that in resistance mesenteric arteries, neflamapimod inhibits p38 MAPKα and phosphorylation of its downstream actin-associated protein Hsp27, leading to vasodilation. This novel finding may be clinically significant and is likely to improve systemic blood pressure and cognitive deficits in AD and DLB patients for which neflamapimod is being investigated.


Asunto(s)
Enfermedad de Alzheimer , Proteína Quinasa 14 Activada por Mitógenos , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Arterias Mesentéricas , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Vasodilatación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Elife ; 112022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35229718

RESUMEN

Polycystin-1 (PC-1, PKD1), a receptor-like protein expressed by the Pkd1 gene, is present in a wide variety of cell types, but its cellular location, signaling mechanisms, and physiological functions are poorly understood. Here, by studying tamoxifen-inducible, endothelial cell (EC)-specific Pkd1 knockout (Pkd1 ecKO) mice, we show that flow activates PC-1-mediated, Ca2+-dependent cation currents in ECs. EC-specific PC-1 knockout attenuates flow-mediated arterial hyperpolarization and vasodilation. PC-1-dependent vasodilation occurs over the entire functional shear stress range and via the activation of endothelial nitric oxide synthase (eNOS) and intermediate (IK)- and small (SK)-conductance Ca2+-activated K+ channels. EC-specific PC-1 knockout increases systemic blood pressure without altering kidney anatomy. PC-1 coimmunoprecipitates with polycystin-2 (PC-2, PKD2), a TRP polycystin channel, and clusters of both proteins locate in nanoscale proximity in the EC plasma membrane. Knockout of either PC-1 or PC-2 (Pkd2 ecKO mice) abolishes surface clusters of both PC-1 and PC-2 in ECs. Single knockout of PC-1 or PC-2 or double knockout of PC-1 and PC-2 (Pkd1/Pkd2 ecKO mice) similarly attenuates flow-mediated vasodilation. Flow stimulates nonselective cation currents in ECs that are similarly inhibited by either PC-1 or PC-2 knockout or by interference peptides corresponding to the C-terminus coiled-coil domains present in PC-1 or PC-2. In summary, we show that PC-1 regulates arterial contractility through the formation of an interdependent signaling complex with PC-2 in ECs. Flow stimulates PC-1/PC-2 clusters in the EC plasma membrane, leading to eNOS, IK channel, and SK channel activation, vasodilation, and a reduction in blood pressure.


Asunto(s)
Canales Catiónicos TRPP/metabolismo , Vasodilatación , Animales , Membrana Celular/metabolismo , Células Endoteliales/metabolismo , Ratones , Ratones Noqueados , Enfermedades Renales Poliquísticas
6.
Cell Mol Biol (Noisy-le-grand) ; 68(9): 1-13, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36905282

RESUMEN

Piper betle L. leaves are very popular and traditionally used to chew with betel nut in many Asian countries. In this study, P. betle leaves juice (PBJ) was subjected to evaluation for its antihyperlipidemic activity in the high-fat-diet-induced hyperlipidemic rats model. Swiss albino rats were allowed to high-fat- diet for one month, followed by concurrent administration of PBJ for another month. The rats were then sacrificed and collected blood, tissues and organs. Pharmacokinetic, toxicological studies and molecular docking studies were performed using SwissADME, admetSAR and schrodinger suit-2017. Our investigation showed a promising effect of PBJ on body weight, lipid profile, oxidative and antioxidative enzymes, and the principle enzyme responsible for the synthesis of cholesterol. PBJ at 0.5 - 3.0 mL/rat significantly reduced body weight of hyperlipidemic rats compared to control. PBJ at the doses of 1.0, 1.5, 2.0, and 3.0 mL/rat significantly (p<0.05, p<0.01, p<0.001) improved the levels of TC, LDL-c, TG, HDL-c and VLDL-c. Similarly, PBJ doses starting from 1.0 mL/rat to 3.0 mL/rat reduced the oxidative biomarkers AST, ALT, ALP, and creatinine. The level of HMG-CoA was significantly reduced by PBJ doses 1.5, 2, and 3 ml/rat. A number of compounds have been found to have good pharmacokinetic profile and safety and 4-coumaroylquinic acid exerted the best docking score among them. Thus our findings clearly demonstrated the potential lipid-lowering activities of PBJ both in vivo and in silico studies. PBJ can be a good candidate for the development of antihyperlipidemic medication or as an alternative medicine.


Asunto(s)
Hipolipemiantes , Estrés Oxidativo , Piper betle , Ratas , Peso Corporal , Colesterol , Dieta Alta en Grasa , Hipolipemiantes/farmacología , Hígado/metabolismo , Simulación del Acoplamiento Molecular
7.
Biochem Biophys Rep ; 28: 101168, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825068

RESUMEN

PURPOSE: This current study investigated the effect of metformin treatment on hepatic oxidative stress and inflammation associated with nonalcoholic fatty liver disease (NADLD) in high fat diet (HFD) fed rats. METHOD: Wistar rats were fed with a HFD or laboratory chow diet for 8 weeks. Metformin was administered orally at a dose of 200 mg/kg. Body weight, food and water intake were recorded on daily basis. Oral glucose tolerance test (OGTT), biochemical analysis and histological examinations were conducted on plasma and tissue samples. Antioxidant and anti-inflammatory mRNA expression was analyzed using reverse transcription polymeric chain reaction (RT-PCR). RESULTS: Metformin treatment for 8 weeks prevented HFD-induced weight gain and decreased fat deposition in HFD fed rats. Biochemical analysis revealed that metformin treatment significantly attenuated nitro-oxidative stress markers malondialdehyde (MDA), advanced protein oxidation product (APOP), and excessive nitric oxide (NO) levels in the liver of HFD fed rats. Gene expression analysis demonestrated that metformin treatment was associated with an enhanced expression of antioxidant genes such as Nrf-2, HO-1, SOD and catalase in liver of HFD fed rats. Metformin treatment also found to modulate the expression of fat metabolizing and anti-inflammatory genes including PPAR--γ, C/EBP-α, SREBP1c, FAS, AMPK and GLUT-4. Consistent with the biochemical and gene expression data, the histopathological examination unveiled that metformin treatment attenuated inflammatory cells infiltration, steatosis, hepatocyte necrosis, collagen deposition, and fibrosis in the liver of HFD fed rats. CONCLUSION: In conclusion, this study suggests that metformin might be effective in the prevention and treatment of HFD-induced steatosis by reducing hepatic oxidative stress and inflammation in the liver.

8.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34639181

RESUMEN

The antidiabetic drug empagliflozin is reported to produce a range of cardiovascular effects, including a reduction in systemic blood pressure. However, whether empagliflozin directly modulates the contractility of resistance-size mesenteric arteries remains unclear. Here, we sought to investigate if empagliflozin could relax resistance-size rat mesenteric arteries and the associated underlying molecular mechanisms. We found that acute empagliflozin application produces a concentration-dependent vasodilation in myogenic, depolarized and phenylephrine (PE)-preconstricted mesenteric arteries. Selective inhibition of smooth muscle cell voltage-gated K+ channels KV1.5 and KV7 abolished empagliflozin-induced vasodilation. In contrast, pharmacological inhibition of large-conductance Ca2+-activated K+ (BKCa) channels and ATP-sensitive (KATP) channels did not abolish vasodilation. Inhibition of the vasodilatory signaling axis involving endothelial nitric oxide (NO), smooth muscle cell soluble guanylyl cyclase (sGC) and protein kinase G (PKG) did not abolish empagliflozin-evoked vasodilation. Inhibition of the endothelium-derived vasodilatory molecule prostacyclin (PGI2) had no effect on the vasodilation. Consistently, empagliflozin-evoked vasodilation remained unaltered by endothelium denudation. Overall, our data suggest that empagliflozin stimulates smooth muscle cell KV channels KV1.5 and KV7, resulting in vasodilation in resistance-size mesenteric arteries. This study demonstrates for the first time a novel mechanism whereby empagliflozin regulates arterial contractility, resulting in vasodilation. Due to known antihypertensive properties, treatment with empagliflozin may complement conventional antihypertensive therapy.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Endotelio Vascular/fisiología , Glucósidos/farmacología , Arterias Mesentéricas/fisiología , Músculo Liso Vascular/fisiología , Canales de Potasio con Entrada de Voltaje/metabolismo , Vasodilatación , Vasodilatadores/farmacología , Animales , Endotelio Vascular/efectos de los fármacos , Masculino , Arterias Mesentéricas/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
9.
Sci Rep ; 10(1): 14659, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887916

RESUMEN

Diabetes is a leading cause of chronic kidney disease, and the high prevalence of sympathetic nervous system (SNS) hyperactivity in diabetic patients makes them further susceptible to SNS-mediated oxidative stress and accelerated kidney damage. Here, we investigated if canagliflozin can reverse isoprenaline (ISO)-induced renal oxidative damage in rats, a model that mimics SNS overstimulation-induced organ injuries in humans. We found that ISO administration elevates renal oxidative stress markers including malondialdehyde (MDA), advanced protein oxidation product (APOP), myeloperoxidase (MPO) and nitric oxide (NO), while depleting levels of endogenous antioxidants such as catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH). Strikingly, canagliflozin treatment of ISO-treated rats not only prevents elevation of oxidative stress markers but also rescues levels of depleted antioxidants. Our results also show that canagliflozin stimulates antioxidant/anti-inflammatory signaling pathways involving AMP-activated protein kinase (AMPK), Akt and eNOS, and inhibits iNOS and NADPH oxidase isoform 4 (NOX4), all of which are associated with oxidative stress and inflammation. Further, canagliflozin prevents ISO-induced apoptosis of kidney cells by inhibiting Bax protein upregulation and caspase-3 activation. Histological examination of kidney sections reveal that canagliflozin attenuates ISO-mediated increases in inflammatory cell infiltration, collagen deposition and fibrosis. Finally, consistent with these findings, canagliflozin treatment improves kidney function in ISO-treated rats, suggesting that the antioxidant effects may be clinically translatable.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Canagliflozina/administración & dosificación , Isoproterenol/efectos adversos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Insuficiencia Renal/inducido químicamente , Insuficiencia Renal/tratamiento farmacológico , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Túbulos Renales/citología , Masculino , Ratas , Ratas Long-Evans
10.
Sci Rep ; 10(1): 14459, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32879422

RESUMEN

The antidiabetic drug canagliflozin is reported to possess several cardioprotective effects. However, no studies have investigated protective effects of canagliflozin in isoprenaline (ISO)-induced cardiac oxidative damage-a model mimicking sympathetic nervous system (SNS) overstimulation-evoked cardiac injuries in humans. Therefore, we investigated protective effects of canagliflozin in ISO-induced cardiac oxidative stress, and their underlying molecular mechanisms in Long-Evans rat heart and in HL-1 cardiomyocyte cell line. Our data showed that ISO administration inflicts pro-oxidative changes in heart by stimulating production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). In contrast, canagliflozin treatment in ISO rats not only preserves endogenous antioxidants but also reduces cardiac oxidative stress markers, fibrosis and apoptosis. Our Western blotting and messenger RNA expression data demonstrated that canagliflozin augments antioxidant and anti-inflammatory signaling involving AMP-activated protein kinase (AMPK), Akt, endothelial nitric oxide synthase (eNOS), nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). In addition, canagliflozin treatment attenuates pro-oxidative, pro-inflammatory and pro-apoptotic signaling mediated by inducible nitric oxide synthase (iNOS), transforming growth factor beta (TGF-ß), NADPH oxidase isoform 4 (Nox4), caspase-3 and Bax. Consistently, canagliflozin treatment improves heart function marker in ISO-treated rats. In summary, we demonstrated that canagliflozin produces cardioprotective actions by promoting multiple antioxidant and anti-inflammatory signaling.


Asunto(s)
Canagliflozina/farmacología , Cardiopatías/tratamiento farmacológico , Lesiones Cardíacas/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Cardiopatías/inducido químicamente , Cardiopatías/metabolismo , Cardiopatías/patología , Lesiones Cardíacas/inducido químicamente , Humanos , Inflamación/inducido químicamente , Inflamación/patología , Isoproterenol/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Long-Evans , Especies Reactivas de Oxígeno/metabolismo
13.
Elife ; 92020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32364494

RESUMEN

PKD2 (polycystin-2, TRPP1), a TRP polycystin channel, is expressed in endothelial cells (ECs), but its physiological functions in this cell type are unclear. Here, we generated inducible, EC-specific Pkd2 knockout mice to examine vascular functions of PKD2. Data show that a broad range of intravascular flow rates stimulate EC PKD2 channels, producing vasodilation. Flow-mediated PKD2 channel activation leads to calcium influx that activates SK/IK channels and eNOS serine 1176 phosphorylation in ECs. These signaling mechanisms produce arterial hyperpolarization and vasodilation. In contrast, EC PKD2 channels do not contribute to acetylcholine-induced vasodilation, suggesting stimulus-specific function. EC-specific PKD2 knockout elevated blood pressure in mice without altering cardiac function or kidney anatomy. These data demonstrate that flow stimulates PKD2 channels in ECs, leading to SK/IK channel and eNOS activation, hyperpolarization, vasodilation and a reduction in systemic blood pressure. Thus, PKD2 channels are a major component of functional flow sensing in the vasculature.


Asunto(s)
Presión Arterial , Células Endoteliales/metabolismo , Hipertensión/metabolismo , Mecanotransducción Celular , Arterias Mesentéricas/metabolismo , Canales Catiónicos TRPP/metabolismo , Vasodilatación , Animales , Señalización del Calcio , Hipertensión/genética , Hipertensión/fisiopatología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Masculino , Potenciales de la Membrana , Arterias Mesentéricas/fisiopatología , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Flujo Sanguíneo Regional , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales Catiónicos TRPP/deficiencia , Canales Catiónicos TRPP/genética
14.
Proc Natl Acad Sci U S A ; 116(52): 27095-27104, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31822608

RESUMEN

PKD2 (polycystin-2, TRPP1) channels are expressed in a wide variety of cell types and can regulate functions, including cell division and contraction. Whether posttranslational modification of PKD2 modifies channel properties is unclear. Similarly uncertain are signaling mechanisms that regulate PKD2 channels in arterial smooth muscle cells (myocytes). Here, by studying inducible, cell-specific Pkd2 knockout mice, we discovered that PKD2 channels are modified by SUMO1 (small ubiquitin-like modifier 1) protein in myocytes of resistance-size arteries. At physiological intravascular pressures, PKD2 exists in approximately equal proportions as either nonsumoylated (PKD2) or triple SUMO1-modifed (SUMO-PKD2) proteins. SUMO-PKD2 recycles, whereas unmodified PKD2 is surface-resident. Intravascular pressure activates voltage-dependent Ca2+ influx that stimulates the return of internalized SUMO-PKD2 channels to the plasma membrane. In contrast, a reduction in intravascular pressure, membrane hyperpolarization, or inhibition of Ca2+ influx leads to lysosomal degradation of internalized SUMO-PKD2 protein, which reduces surface channel abundance. Through this sumoylation-dependent mechanism, intravascular pressure regulates the surface density of SUMO-PKD2-mediated Na+ currents (INa) in myocytes to control arterial contractility. We also demonstrate that intravascular pressure activates SUMO-PKD2, not PKD2, channels, as desumoylation leads to loss of INa activation in myocytes and vasodilation. In summary, this study reveals that PKD2 channels undergo posttranslational modification by SUMO1, which enables physiological regulation of their surface abundance and pressure-mediated activation in myocytes and thus control of arterial contractility.

15.
Elife ; 72018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30511640

RESUMEN

Systemic blood pressure is determined, in part, by arterial smooth muscle cells (myocytes). Several Transient Receptor Potential (TRP) channels are proposed to be expressed in arterial myocytes, but it is unclear if these proteins control physiological blood pressure and contribute to hypertension in vivo. We generated the first inducible, smooth muscle-specific knockout mice for a TRP channel, namely for PKD2 (TRPP1), to investigate arterial myocyte and blood pressure regulation by this protein. Using this model, we show that intravascular pressure and α1-adrenoceptors activate PKD2 channels in arterial myocytes of different systemic organs. PKD2 channel activation in arterial myocytes leads to an inward Na+ current, membrane depolarization and vasoconstriction. Inducible, smooth muscle cell-specific PKD2 knockout lowers both physiological blood pressure and hypertension and prevents pathological arterial remodeling during hypertension. Thus, arterial myocyte PKD2 controls systemic blood pressure and targeting this TRP channel reduces high blood pressure.


Asunto(s)
Arterias/metabolismo , Hipertensión/genética , Miocitos del Músculo Liso/metabolismo , Receptores Adrenérgicos alfa 1/genética , Sodio/metabolismo , Canales Catiónicos TRPP/genética , Animales , Arterias/fisiopatología , Presión Sanguínea/fisiología , Cationes Monovalentes , Regulación de la Expresión Génica , Miembro Posterior/irrigación sanguínea , Miembro Posterior/citología , Hipertensión/metabolismo , Hipertensión/fisiopatología , Transporte Iónico , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/patología , Receptores Adrenérgicos alfa 1/metabolismo , Transducción de Señal , Canales Catiónicos TRPP/deficiencia , Vasoconstricción/fisiología
16.
Int J Mol Sci ; 19(4)2018 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-29690581

RESUMEN

Ca2+ signaling influences nearly every aspect of cellular life. Transient receptor potential (TRP) ion channels have emerged as cellular sensors for thermal, chemical and mechanical stimuli and are major contributors to Ca2+ signaling, playing an important role in diverse physiological and pathological processes. Notably, TRP ion channels are also one of the major downstream targets of Ca2+ signaling initiated either from TRP channels themselves or from various other sources, such as G-protein coupled receptors, giving rise to feedback regulation. TRP channels therefore function like integrators of Ca2+ signaling. A growing body of research has demonstrated different modes of Ca2+-dependent regulation of TRP ion channels and the underlying mechanisms. However, the precise actions of Ca2+ in the modulation of TRP ion channels remain elusive. Advances in Ca2+ regulation of TRP channels are critical to our understanding of the diversified functions of TRP channels and complex Ca2+ signaling.


Asunto(s)
Calcio/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Humanos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Canales de Potencial de Receptor Transitorio/genética
17.
Microcirculation ; 25(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28963858

RESUMEN

Membrane potential is a principal regulator of arterial contractility. Arterial smooth muscle cells express several different types of ion channel that control membrane potential, including KV channels. KV channel activation leads to membrane hyperpolarization, resulting in inhibition of voltage-dependent Ca2+ channels, a reduction in [Ca2+ ]i , and vasodilation. In contrast, KV channel inhibition leads to membrane depolarization and vasoconstriction. The ability of KV channels to regulate arterial contractility is dependent upon the number of plasma membrane-resident channels and their open probability. Here, we will discuss mechanisms that alter the surface abundance of KV channel proteins in arterial smooth muscle cells and the functional consequences of such regulation. Cellular processes that will be described include those that modulate KV channel transcription, retrograde and anterograde trafficking, and protein degradation.


Asunto(s)
Hemodinámica , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Humanos , Miocitos del Músculo Liso/química , Miocitos del Músculo Liso/metabolismo , Canales de Potasio con Entrada de Voltaje/fisiología , Vasoconstricción , Vasodilatación
19.
Sci Rep ; 7: 45098, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28332600

RESUMEN

TRPA1 is a Ca2+-permeable ion channel involved in many sensory disorders such as pain, itch and neuropathy. Notably, the function of TRPA1 depends on Ca2+, with low Ca2+ potentiating and high Ca2+ inactivating TRPA1. However, it remains unknown how Ca2+ exerts such contrasting effects. Here, we show that Ca2+ regulates TRPA1 through calmodulin, which binds to TRPA1 in a Ca2+-dependent manner. Calmodulin binding enhanced TRPA1 sensitivity and Ca2+-evoked potentiation of TRPA1 at low Ca2+, but inhibited TRPA1 sensitivity and promoted TRPA1 desensitization at high Ca2+. Ca2+-dependent potentiation and inactivation of TRPA1 were selectively prevented by disrupting the interaction of the carboxy-lobe of calmodulin with a calmodulin-binding domain in the C-terminus of TRPA1. Calmodulin is thus a critical Ca2+ sensor enabling TRPA1 to respond to diverse Ca2+ signals distinctly.

20.
J Neurosci ; 34(24): 8246-58, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24920628

RESUMEN

Peripheral nociceptors are excited by the activation of membrane receptors and ion channels. The heat-sensitive TRPV1 ion channel responds to various noxious chemical and thermal stimuli, causing pain and itch. Here, we show that TRPV1 is coexpressed with PKCßII in a subset of mouse sensory neurons and that, in these neurons, TRPV1 binds directly to PKCßII, leading to the activation and translocation of PKCßII. Activated PKCßII, in turn, significantly increases the responsiveness of TRPV1 by phosphorylating Thr705. The heat sensitivity of TRPV1 is almost eliminated by either knocking down PKCßII or mutating Thr705; however, neither of these manipulations affects the potentiation of TRPV1 caused by the activation of PKCε. PKCßII thus acts as an auxiliary subunit of TRPV1 by forming a population-dependent TRPV1 ion channel complex controlling the sensitivity of TRPV1 and setting the threshold for pain and itch.


Asunto(s)
Calor , Proteína Quinasa C beta/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Animales Recién Nacidos , Capsaicina/farmacología , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Regulación hacia Abajo/fisiología , Femenino , Ganglios Espinales/citología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Fosforilación , Unión Proteica/genética , Ratas , Ratas Wistar , Fármacos del Sistema Sensorial/farmacología , Canales Catiónicos TRPV/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...